ЭКОЛОГИЯ ПРИРОДА - ЧЕЛОВЕК - ТЕХНИКА
«транспортировки», в том числе пыльцы и семян.
Таблица 4.1
Классификация межвидовых отношений в зависимости от влияния численности каждого из видов пары на изменения численности другого
Влияние первого вида на второй
Влияние второго вида на первый
Тип взаимодействия
Пример
0
0
Нейтрализм
Волк и капуста; синицы и мыши
–
0
Аменсализм
Ель и светолюбивая трава; грибы-продуценты антибиотиков и бактерии
+
0
Комменсализм
Лев и грифы-падалыцики; акула и рыбы-прилипалы; дуплистые деревья и птицы
–
–
Конкуренция
Овцы и кролики; песец и полярная сова; обитатели птичьих базаров
+
–
Ресурс-эксплуататор
Капуста и коза, антилопы и львы, животное-хозяин и глист-паразит
+
+
Мутуализм
Лишайник (гриб + водоросль); микоризы деревьев; корова и микрофлора рубца
Примечание: Влияние отсутствует (0); влияние численности одного вида на другой: однонаправленное (+); противоположно направленное (-).
Конкуренция (-,-) является одним из двух главных механизмов регулирования числа организмов в природе. Двустороннее взаимное угнетающее действие имеет место всегда, когда совпадают экологические ниши и офаниченна емкость среды. Совпадение ниш может быть абсолютным, когда речь идет об организмах одного вида, даже одной популяции, о внутривидовой конкуренции. Выше было показано, что при росте популяции, когда ее численность приближается к пределу емкости среды, вступает в действие механизм регуляции численности: смертность возрастает, а плодовитость снижается. Пространство и пища становятся предметом конкуренции. Их дефицит выступает в качестве причины снижения жизнеспособности и плодовитости значительной части или всей популяции. В загущенных посевах растений происходит «самоизреживание». В перенаселенных популяциях животных, особенно у грызунов, если не может быть реализован оптимизационный поиск, к общему угнетению добавляется увеличение смертности из-за стресса, повышение агрессивности, возникновение «иерархии угнетения», каннибализм - крайние проявления борьбы за существование. Внутривидовая конкуренция хорошо выражена во многих популяциях растений и животных.
У разных видов экологические ниши всегда различаются по пространству, времени и ресурсам. Любое их совмещение по этим качествам всегда ведет к межвидовой конкуренции. Бывает, что ниша одного вида перекрывает нишу другого вида, т.е. биоинтервалы условий жизни первого охватывают биоинтервалы второго. В этом случае второй вид совсем вытесняется первым; конкуренция между ними идет по пути конкурентного исключения, или конкурентного замещения. Так часто бывало при интродукции новых видов. Конкурентное исключение часто сопровождается пространственным разобщением конкурирующих видов, территориальным вытеснением. У высших позвоночных оно часто обусловлено прямой территориальной агрессией. Во многих случаях благодаря многообразию связей и ресурсов происходит лишь частичное, краевое совмещение экологических ниш. В этом случае также наблюдается взаимное угнетение конкурирующих видов, но в конечном счете между ними устанавливается конкурентное равновесие, режим напряженного сосуществования.
«Ресурс - эксплуататор» (+, -). В этом взаимодействии соединяются и противостоят благоприятствование и угнетение. Наиболее важными примерами такого рода являются отношения:
1)
растения и растительноядного животного;
2)
жертвы и хищника (в узком смысле этих понятий);
3)
организма-хозяина» и паразита.
Именно этими отношениями обусловлены последовательности цепей питания и трофических уровней, определяющие соотношение численностей и биомасс организмов.
Обычно численности популяций эксплуататора и жертвы поддерживаются около каких-то относительно постоянных, как бы «договорных» уровней. Ускользание жертвы или нападение хищника не могут быть всегда только успешными или только безуспешными. Стадо травоядных по отношению к площади используемых пастбищ не должно быть настолько большим, чтобы полностью уничтожить растительный покров. Паразит не может позволить себе быстро погубить хозяина, по крайней мере до тех пор, пока не гарантирует себе продолжение рода.
Равновесие в таких системах может и нарушаться. Если два вида стали контактировать только недавно или резко изменилась среда, система оказывается неустойчивой и может привести к исчезновению какого-нибудь вида «ресурса». Как раз к таким результатам приводят многие антропогенные воздействия, при которых преобразуются новые территории и перемещаются растения и животные.
Мутуализм (+,+) - взаимное положительное воздействие также широко распространено в природе. Кроме лишайника - симбиоза гриба и водоросли - примерами мутуализма могут быть взаимовыгодные отношения между цветковыми растениями и опыляющими их насекомыми и птицами; между тлями и «пасущими» их муравьями; между бобовыми растениями и поселяющимися на их корнях клубеньковыми азотофиксирующими бактериями; между жвачными животными и населяющими их рубец микроорганизмами и т.п. Интересны такие примеры мутуализма, когда в клетках животных (инфузорий, губок, кишечнополостных) поселяются одноклеточные зеленые водоросли, снабжающие гетеротрофного «хозяина» продуктами фотосинтеза. Иногда все формы (+,+)-связей называют симбиозом, т.е. сожительством. Но сожительство характерно и для других форм межвидовых отношений, таких, как комменсализм и паразитизм.
4.4. Ресурсы биосферы
В этом параграфе приведены краткие характеристики наиболее важных экологических факторов, которые рассматриваются как ресурсы экосистем и биосферы с точки зрения приспособления к ним живых организмов.
Энергия. Главными источниками биологически используемой энергии для подавляющего большинства живых существ на Земле являются солнечный свет и пища, в органических веществах которой аккумулирована солнечная энергия. Валовой ресурс солнечной энергии практически неисчерпаем. Ее доступность для земных потребителей обусловлена солнечной постоянной и климатом, а также первичной продукцией биосферы. Ресурсы небиологического использования энергии рассматриваются в главе 5.
Солнечная радиация. Плотность потока солнечного излучения достигающего пределов земной атмосферы, составляет 1360 Вт/м2. Эта величина называется солнечной постоянной. На единицу площади (всей поверхности атмосферы приходится в среднем 1/4 солнечной постоянной. Дальнейшее распределение этого потока зависит от высоты Солнца над горизонтом, географической широты, состояния атмосферы и других факторов. Часть поступившей энергии отражается атмосферой в космическое пространство, другая часть поглощается толщей атмосферы и идет на ее нагревание. Итоговый радиационный баланс прихода солнечной энергии к поверхности земли составляет от 15 Вт/м2 в субполярных широтах до 120 Вт/м2 в тропических.
В целом около 56% суммарной радиации идет на испарение воды. При конденсации влаги эта теплота выделяется и вместе с остальными 44% расходуется на нагрев воздуха, воды, земли и обусловленные этим нагревом конвективные процессы в атмосфере и гидросфере (ветры, течения). Менее 1% суммарной радиации поглощается при различных фотохимических реакциях в нижних слоях атмосферы, верхних слоях воды и в клетках растений. Главной составляющей этих фотохимических реакций является фотосинтез.
При прохождении солнечного излучения через атмосферу его энергетический спектр заметно изменяется: в верхних слоях, в основном озоновым слоем, поглощается коротковолновое ультрафиолетовое, а ниже, облачным покровом - инфракрасное излучение. Верхний предел жесткости энергетического спектра солнечного света, к которому приспособлено большинство живых организмов, соответствует длине волны 280-290 нм.
Для всего живого на Земле сложившийся за миллионы лет радиационный баланс является необходимым условием жизнедеятельности.
Свет имеет фундаментальное экологическое значение. Именно свет является источником энергии для фотосинтеза. Морфология растений, структура растительного покрова (ассоциации, ярусность) организованы для наиболее эффективного восприятия световой энергии. Светоприемная поверхность земной флоры колоссальна: она в четыре раза больше поверхности планеты. Диапазон плотности светового потока (освещенности), в пределах которого разные растения могут осуществлять фотосинтез, простирается от 5 до 350 Вт/м2, а длина волн фотосинтетически активной радиации - от 370 до 720 нм.
Растения приспособлены к определенному световому довольствию (СД) - освещенности в данном местообитании по сравнению с полной освещенностью непокрытой почвы.
Таблица 4.1
Классификация межвидовых отношений в зависимости от влияния численности каждого из видов пары на изменения численности другого
Влияние первого вида на второй
Влияние второго вида на первый
Тип взаимодействия
Пример
0
0
Нейтрализм
Волк и капуста; синицы и мыши
–
0
Аменсализм
Ель и светолюбивая трава; грибы-продуценты антибиотиков и бактерии
+
0
Комменсализм
Лев и грифы-падалыцики; акула и рыбы-прилипалы; дуплистые деревья и птицы
–
–
Конкуренция
Овцы и кролики; песец и полярная сова; обитатели птичьих базаров
+
–
Ресурс-эксплуататор
Капуста и коза, антилопы и львы, животное-хозяин и глист-паразит
+
+
Мутуализм
Лишайник (гриб + водоросль); микоризы деревьев; корова и микрофлора рубца
Примечание: Влияние отсутствует (0); влияние численности одного вида на другой: однонаправленное (+); противоположно направленное (-).
Конкуренция (-,-) является одним из двух главных механизмов регулирования числа организмов в природе. Двустороннее взаимное угнетающее действие имеет место всегда, когда совпадают экологические ниши и офаниченна емкость среды. Совпадение ниш может быть абсолютным, когда речь идет об организмах одного вида, даже одной популяции, о внутривидовой конкуренции. Выше было показано, что при росте популяции, когда ее численность приближается к пределу емкости среды, вступает в действие механизм регуляции численности: смертность возрастает, а плодовитость снижается. Пространство и пища становятся предметом конкуренции. Их дефицит выступает в качестве причины снижения жизнеспособности и плодовитости значительной части или всей популяции. В загущенных посевах растений происходит «самоизреживание». В перенаселенных популяциях животных, особенно у грызунов, если не может быть реализован оптимизационный поиск, к общему угнетению добавляется увеличение смертности из-за стресса, повышение агрессивности, возникновение «иерархии угнетения», каннибализм - крайние проявления борьбы за существование. Внутривидовая конкуренция хорошо выражена во многих популяциях растений и животных.
У разных видов экологические ниши всегда различаются по пространству, времени и ресурсам. Любое их совмещение по этим качествам всегда ведет к межвидовой конкуренции. Бывает, что ниша одного вида перекрывает нишу другого вида, т.е. биоинтервалы условий жизни первого охватывают биоинтервалы второго. В этом случае второй вид совсем вытесняется первым; конкуренция между ними идет по пути конкурентного исключения, или конкурентного замещения. Так часто бывало при интродукции новых видов. Конкурентное исключение часто сопровождается пространственным разобщением конкурирующих видов, территориальным вытеснением. У высших позвоночных оно часто обусловлено прямой территориальной агрессией. Во многих случаях благодаря многообразию связей и ресурсов происходит лишь частичное, краевое совмещение экологических ниш. В этом случае также наблюдается взаимное угнетение конкурирующих видов, но в конечном счете между ними устанавливается конкурентное равновесие, режим напряженного сосуществования.
«Ресурс - эксплуататор» (+, -). В этом взаимодействии соединяются и противостоят благоприятствование и угнетение. Наиболее важными примерами такого рода являются отношения:
1)
растения и растительноядного животного;
2)
жертвы и хищника (в узком смысле этих понятий);
3)
организма-хозяина» и паразита.
Именно этими отношениями обусловлены последовательности цепей питания и трофических уровней, определяющие соотношение численностей и биомасс организмов.
Обычно численности популяций эксплуататора и жертвы поддерживаются около каких-то относительно постоянных, как бы «договорных» уровней. Ускользание жертвы или нападение хищника не могут быть всегда только успешными или только безуспешными. Стадо травоядных по отношению к площади используемых пастбищ не должно быть настолько большим, чтобы полностью уничтожить растительный покров. Паразит не может позволить себе быстро погубить хозяина, по крайней мере до тех пор, пока не гарантирует себе продолжение рода.
Равновесие в таких системах может и нарушаться. Если два вида стали контактировать только недавно или резко изменилась среда, система оказывается неустойчивой и может привести к исчезновению какого-нибудь вида «ресурса». Как раз к таким результатам приводят многие антропогенные воздействия, при которых преобразуются новые территории и перемещаются растения и животные.
Мутуализм (+,+) - взаимное положительное воздействие также широко распространено в природе. Кроме лишайника - симбиоза гриба и водоросли - примерами мутуализма могут быть взаимовыгодные отношения между цветковыми растениями и опыляющими их насекомыми и птицами; между тлями и «пасущими» их муравьями; между бобовыми растениями и поселяющимися на их корнях клубеньковыми азотофиксирующими бактериями; между жвачными животными и населяющими их рубец микроорганизмами и т.п. Интересны такие примеры мутуализма, когда в клетках животных (инфузорий, губок, кишечнополостных) поселяются одноклеточные зеленые водоросли, снабжающие гетеротрофного «хозяина» продуктами фотосинтеза. Иногда все формы (+,+)-связей называют симбиозом, т.е. сожительством. Но сожительство характерно и для других форм межвидовых отношений, таких, как комменсализм и паразитизм.
4.4. Ресурсы биосферы
В этом параграфе приведены краткие характеристики наиболее важных экологических факторов, которые рассматриваются как ресурсы экосистем и биосферы с точки зрения приспособления к ним живых организмов.
Энергия. Главными источниками биологически используемой энергии для подавляющего большинства живых существ на Земле являются солнечный свет и пища, в органических веществах которой аккумулирована солнечная энергия. Валовой ресурс солнечной энергии практически неисчерпаем. Ее доступность для земных потребителей обусловлена солнечной постоянной и климатом, а также первичной продукцией биосферы. Ресурсы небиологического использования энергии рассматриваются в главе 5.
Солнечная радиация. Плотность потока солнечного излучения достигающего пределов земной атмосферы, составляет 1360 Вт/м2. Эта величина называется солнечной постоянной. На единицу площади (всей поверхности атмосферы приходится в среднем 1/4 солнечной постоянной. Дальнейшее распределение этого потока зависит от высоты Солнца над горизонтом, географической широты, состояния атмосферы и других факторов. Часть поступившей энергии отражается атмосферой в космическое пространство, другая часть поглощается толщей атмосферы и идет на ее нагревание. Итоговый радиационный баланс прихода солнечной энергии к поверхности земли составляет от 15 Вт/м2 в субполярных широтах до 120 Вт/м2 в тропических.
В целом около 56% суммарной радиации идет на испарение воды. При конденсации влаги эта теплота выделяется и вместе с остальными 44% расходуется на нагрев воздуха, воды, земли и обусловленные этим нагревом конвективные процессы в атмосфере и гидросфере (ветры, течения). Менее 1% суммарной радиации поглощается при различных фотохимических реакциях в нижних слоях атмосферы, верхних слоях воды и в клетках растений. Главной составляющей этих фотохимических реакций является фотосинтез.
При прохождении солнечного излучения через атмосферу его энергетический спектр заметно изменяется: в верхних слоях, в основном озоновым слоем, поглощается коротковолновое ультрафиолетовое, а ниже, облачным покровом - инфракрасное излучение. Верхний предел жесткости энергетического спектра солнечного света, к которому приспособлено большинство живых организмов, соответствует длине волны 280-290 нм.
Для всего живого на Земле сложившийся за миллионы лет радиационный баланс является необходимым условием жизнедеятельности.
Свет имеет фундаментальное экологическое значение. Именно свет является источником энергии для фотосинтеза. Морфология растений, структура растительного покрова (ассоциации, ярусность) организованы для наиболее эффективного восприятия световой энергии. Светоприемная поверхность земной флоры колоссальна: она в четыре раза больше поверхности планеты. Диапазон плотности светового потока (освещенности), в пределах которого разные растения могут осуществлять фотосинтез, простирается от 5 до 350 Вт/м2, а длина волн фотосинтетически активной радиации - от 370 до 720 нм.
Растения приспособлены к определенному световому довольствию (СД) - освещенности в данном местообитании по сравнению с полной освещенностью непокрытой почвы.
Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях