www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

Экология. Степанoвских Часть 4

д.
Следовательно, делает вывод М.С. Соколов и др. (1994), самый строгий контроль состояния агроэкосистем, который требует значительных затрат энергии, можно осуществить только в закрытом пространстве. К данной категории относят полуоткрытые системы с весьма ограниченными каналами сообщения с внешней средой (теплицы, животноводческие коплексы), где регулируются и в значительной степени контролируются температура, радиация, круговорот минеральных и органических веществ. Это — управляемые агроэкосис-темы. Все другие агроэкосистемы — открытые. Со стороны человека эффективность контроля тем выше, чем они проще.
В полуоткрытые и открытых системах усилия человека сводятся к обеспечению оптимальных условий роста организмов и строгому биологическому контролю за их составом. Исходя из этого возникают следующие практические задачи:
— во-первых, по возможности полное устранение нежелательных видов;
— во-вторых, отбор генотипов, обладающих высокой потенциальной продуктивностью.
В целом круговорот веществ связывает различные виды, населяющие а^оэкосистемы (рис. 18.7).

Рис. 18.7. Поток энергии в пастбищной агроэкосистеме

(по Н.А. Уразаеву и др., 1996) :
Примечание: белыми стрелками показана миграция веществ от продуцентов к первичным и вторичным консументам, черными — минерализация органических остатков растений и животных

Автотрофные организмы — продуценты, главным образом травы (I); первичные консументы, большей частью сельскохозяйственные животные (II); вторичные консументы — паразиты и микроорганизмы (III) и организмами-редуцентами являются грибы и микробы (IV). Отдельные живые организмы (животные) по отношению к звеньям трофической цепи было бы неправильным рассматривать только как консументы, а микроорганизмы как исключительно редуцен-ты и деструкторы. Утилизируя органические соединения, животные разлагают их до простейших соединений — аммиака, мочевины, углекислого газа, воды или выступают как редуценты. Микроорганизмы, поедаемые хищньми простейшими, выступают как пищевой субстрат и источник энергии для консументов и т. д.
В биосфере многие циркулирующие вещества биогенного происхождения одновременно являются и носителями энергии. Растения в процессе фотосинтеза превращают лучистую энергию Солнца в энергию химических связей органических веществ и накапливают ее в форме углеводов — потенциальных энергоносителей. Данная энергия включается в круговорот питания от растений через фитофаги к консументам более высоких порядков. Количество связанной энергии по мере движения по трофической цепи постоянно уменьшается, так как значительная ее часть расходуется для поддержания жизненных функций консументов. Благодаря круговороту энергии в экосистеме поддерживается разнообразие форм жизни, а система сохраняет устойчивость.
По М.С. Соколову и др. (1994) расход фотосинтетической энергии растений в агроэкосистеме на примере лугопастбищных угодий средней полосы России выглядит следующим образом:
— около 1/6 части используемой растениями энергии расходуется на дыхание;
— около 1/4 части энергии поступает в организм растительнояд-ных животных. При этом 50% ее оказывается в экскрементах и трупах животных;
— в целом вместе с отмершими растениями и фитофагами около 3/4 первоначально поглощенной энергии содержится в мертвом органическом веществе и немногим более 1/4 исключается из экосистемы при дыхании в форме тепла.
Еще раз отметим, что поток энергии в пищевой цепи агроэко-системы подчиняется закону превращения энергии в экосистемах, так называемому закону Линдемана, или закону 10%. По закону Линдемана, только часть энергии, поступившей на определенный трофический уровень агроценоза (биоценоза), передается организмам, находящимся на более высоких трофических уровнях (рис. 18.8).

Рис. 18.8. Потери энергии в пищевой цепи (по Т. Миллеру, 1994)

Передача энергии с одного уровня на другой происходит с очень малым КПД. Этим объясняется ограниченное количество звеньев в пищевой цепи независимо от того или иного агроценоза.
Количество энергии, продуцируемое в конкретной природной экосистеме, является довольно стабильной величиной. Благодаря способности экосистемы производить биомассу, человек получает необходимые ему пищевые и многие технические ресурсы. Как уже было отмечено, проблема обеспечения численно растущего человечества пищей — это главным образом проблема повышения продуктивности агроэкосистем (сельского хозяйства), рис. 18.9.



Рис.18.9. Блок-схема продуктивности агроэкосистем

Воздействие человека на экологические системы, связанное с их разрушением или загрязнением, непосредственно ведет к прерыванию потока энергии и вещества, а значит, и к снижению продуктивности. Поэтому первая задача, стоящая перед человечеством, — предотвращение снижения продуктивности агроэкосистем, а после ее решения может быть решена и вторая важнейшая задача — повышение продуктивности.
В 90-х гг. XX в. годовая первичная продуктивность обрабатываемых земель на планете составляла 8,7 млрд т, а запас энергии — 14,71017кДж.

18.4.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях