Экология. Степанoвских Часть 1
4.4).
Рис. 4.4. Листорасположение у подроста липы мелколистной в разных условиях освещения (вид сверху):
А — под пологом леса, Б — на открытом месте (по Т. К. Горышиной, 1979)
Мелкие листья располагаются между крупными. Такая мозаика характерна как для древесной, так и травянистой растительности сильно затененных лесов.
Оптический аппарат гелиофитов развит лучше, чем у сциофитов, имеет большую фотоактивную поверхность и приспособлен к более полному поглощению света. На сухую массу в листьях гелиофитов приходится меньше хлорофилла, однако в них больше содержится пигментов I пигментной системы и хлорофилла П700. Отношение хлорофилла d к хлорофиллу b равно примерно 5:1. Отсюда высокая фотосинтетическая способность гелиофитов. Интенсивность фотосинтеза достигает максимума при полном солнечном освещении.
У особой группы растений — гелиофктов, у которых фиксация СО2 идет путем С-4-дикарбоновых кислот, световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. Это растения из засушливых областей (пустынь, саванн), принадлежащие к 13 семействам цветковых растений (например, мятликовые, осоковые, амарантовые, маревые, гвоздичные и др.). Они способны к вторичной фиксации и реутилизации СО2 , освобождающегося при световом дыхании, и могут фо-тосинтезировать при высоких температурах и при закрытых устьицах, что нередко наблюдается в жаркие часы дня.
Обычно С-4-растения отличаются высокой продуктивностью, особенно кукуруза и сахарный тростник.
Интенсивность света, падающего на автотрофный ярус, управляет всей экосистемой, влияя на первичную продукцию. Как у наземных, так и у водных растений интенсивность фотосинтеза связана с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза, при высоких интенсивностях прямого солнечного света. Таким образом, здесь вступает в действие компенсация факторов: отдельные растения и целые сообщества приспосабливаются к разным интенсивностям света, становясь «адаптированными к тени» или «адаптированными к прямому солнечному свету».
Интенсивность освещения влияет на активность животных, определяя среди них виды, ведущие сумеречный, ночной и дневной образ жизни. Ориентация на свет осуществляется в результате «фототаксисов»: положительного (перемещение в сторону наибольшей освещенности) и отрицательного (перемещение в сторону наименьшей освещенности). Так, в сумерки летают бабочки бражника, охотится еж. Майские хрущи начинают летать только в 21—22 ч и заканчивают лет после полуночи, комары же активны с вечера до утра. Ночной образ жизни ведет куница. Бесшумно, обследуя одно дерево за другим, отыскивает она гнезда белок и нападает на спящих зверьков.
Освещение вызывает у растений ростовые движения, которые проявляются в том, что из-за неравномерного роста стебля или корня происходит их искривление. Это явление носит название фототропизма.
Одностороннее освещение смещает в затененную сторону поток ростового гормона ауксина, направленного, как правило, строго вниз. Обеднение ауксином освещенной стороны побега приводит здесь к торможению роста, а обогащение ауксином затененной стороны — к стимуляции роста, что и вызывает искривление.
Движение Земли вокруг Солнца вызывает закономерные изменения длины дня и ночи по сезонам года. Сезонная ритмичность в жизнедеятельности организмов определяется в первую очередь сокращением световой части суток осенью и увеличением — весной. В действиях организмов выработались особые механизмы, реагирующие на продолжительность дня. Так, определенные птицы и млекопитающие поселяются в высоких широтах с длинным полярным днем. Осенью, при сокращении дня, они мигрируют на юг. Летом в тундре скапливается большое количество животных, и, несмотря на общую суровость климата, они при обилии света успевают закончить размножение. Однако в тундру практически не проникают ночные хищники. За короткую летнюю ночь они не могут прокормить ни себя, ни потомство.
Уменьшение светового дня в конце лета ведет к прекращению роста, стимулирует отложение запасных питательных веществ организмов, вызывает у животных осенью линьку, определяет сроки группирования в стаи, миграции, переход в состояние покоя и спячки. Увеличение длины светового дня стимулирует половую функцию у птиц, млекопитающих, определяет сроки цветения растений (ольха, мать-и-мачеха и др.).
Растения, развитие которых нормально происходит при длинном дне, называют длиннодневными. Это растения наших северных зон и средней полосы (рожь, пшеница, луговые злаки, клевер, фиалки и др.). Другие растения нормально развиваются при сокращенном световом дне. Их называют короткодневными. К ним относятся выходцы из южных районов (гречиха, просо, подсолнечник, астры и др.).
Доказана способность птиц к навигации. При дальних перелетах они с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок (рис. 4.5), ориентируясь по солнцу и звездам, т.
Рис. 4.4. Листорасположение у подроста липы мелколистной в разных условиях освещения (вид сверху):
А — под пологом леса, Б — на открытом месте (по Т. К. Горышиной, 1979)
Мелкие листья располагаются между крупными. Такая мозаика характерна как для древесной, так и травянистой растительности сильно затененных лесов.
Оптический аппарат гелиофитов развит лучше, чем у сциофитов, имеет большую фотоактивную поверхность и приспособлен к более полному поглощению света. На сухую массу в листьях гелиофитов приходится меньше хлорофилла, однако в них больше содержится пигментов I пигментной системы и хлорофилла П700. Отношение хлорофилла d к хлорофиллу b равно примерно 5:1. Отсюда высокая фотосинтетическая способность гелиофитов. Интенсивность фотосинтеза достигает максимума при полном солнечном освещении.
У особой группы растений — гелиофктов, у которых фиксация СО2 идет путем С-4-дикарбоновых кислот, световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. Это растения из засушливых областей (пустынь, саванн), принадлежащие к 13 семействам цветковых растений (например, мятликовые, осоковые, амарантовые, маревые, гвоздичные и др.). Они способны к вторичной фиксации и реутилизации СО2 , освобождающегося при световом дыхании, и могут фо-тосинтезировать при высоких температурах и при закрытых устьицах, что нередко наблюдается в жаркие часы дня.
Обычно С-4-растения отличаются высокой продуктивностью, особенно кукуруза и сахарный тростник.
Интенсивность света, падающего на автотрофный ярус, управляет всей экосистемой, влияя на первичную продукцию. Как у наземных, так и у водных растений интенсивность фотосинтеза связана с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза, при высоких интенсивностях прямого солнечного света. Таким образом, здесь вступает в действие компенсация факторов: отдельные растения и целые сообщества приспосабливаются к разным интенсивностям света, становясь «адаптированными к тени» или «адаптированными к прямому солнечному свету».
Интенсивность освещения влияет на активность животных, определяя среди них виды, ведущие сумеречный, ночной и дневной образ жизни. Ориентация на свет осуществляется в результате «фототаксисов»: положительного (перемещение в сторону наибольшей освещенности) и отрицательного (перемещение в сторону наименьшей освещенности). Так, в сумерки летают бабочки бражника, охотится еж. Майские хрущи начинают летать только в 21—22 ч и заканчивают лет после полуночи, комары же активны с вечера до утра. Ночной образ жизни ведет куница. Бесшумно, обследуя одно дерево за другим, отыскивает она гнезда белок и нападает на спящих зверьков.
Освещение вызывает у растений ростовые движения, которые проявляются в том, что из-за неравномерного роста стебля или корня происходит их искривление. Это явление носит название фототропизма.
Одностороннее освещение смещает в затененную сторону поток ростового гормона ауксина, направленного, как правило, строго вниз. Обеднение ауксином освещенной стороны побега приводит здесь к торможению роста, а обогащение ауксином затененной стороны — к стимуляции роста, что и вызывает искривление.
Движение Земли вокруг Солнца вызывает закономерные изменения длины дня и ночи по сезонам года. Сезонная ритмичность в жизнедеятельности организмов определяется в первую очередь сокращением световой части суток осенью и увеличением — весной. В действиях организмов выработались особые механизмы, реагирующие на продолжительность дня. Так, определенные птицы и млекопитающие поселяются в высоких широтах с длинным полярным днем. Осенью, при сокращении дня, они мигрируют на юг. Летом в тундре скапливается большое количество животных, и, несмотря на общую суровость климата, они при обилии света успевают закончить размножение. Однако в тундру практически не проникают ночные хищники. За короткую летнюю ночь они не могут прокормить ни себя, ни потомство.
Уменьшение светового дня в конце лета ведет к прекращению роста, стимулирует отложение запасных питательных веществ организмов, вызывает у животных осенью линьку, определяет сроки группирования в стаи, миграции, переход в состояние покоя и спячки. Увеличение длины светового дня стимулирует половую функцию у птиц, млекопитающих, определяет сроки цветения растений (ольха, мать-и-мачеха и др.).
Растения, развитие которых нормально происходит при длинном дне, называют длиннодневными. Это растения наших северных зон и средней полосы (рожь, пшеница, луговые злаки, клевер, фиалки и др.). Другие растения нормально развиваются при сокращенном световом дне. Их называют короткодневными. К ним относятся выходцы из южных районов (гречиха, просо, подсолнечник, астры и др.).
Доказана способность птиц к навигации. При дальних перелетах они с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок (рис. 4.5), ориентируясь по солнцу и звездам, т.
Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях