www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Негорючие вещества и материалы не способны гореть на воздухе. Для количественной характеристики горючести веществ и материалов используют показатель возгораемости В:


(22.4)
где

– количество теплоты, полученный от источника поджигания;
Q0 – количество теплоты, выделяемой образцом при горении в процессе испытания.

Если величина В более 0,5, то материалы относят к сгораемым, для трудносгораемых В = 0,1–0,5, а для несгораемых – В менее 0,1.
Основными причинами пожаров на производстве являются нарушение технологического режима работы оборудования, неисправность электрооборудования, плохая подготовка оборудования к ремонту, самовозгорание различных материалов и др. В соответствии с нормативными документами (ГОСТ 12.1.044-84 «Пожарная безопасность» и ГОСТ 12.1.010-76 «Взрывобезопасность. Общие требования») вероятность возникновения пожара или взрыва в течение года не должна превышать 10-6 (одной миллионной). Для предотвращения пожаров и взрывов необходимо исключить возможность образования горючей и взрывоопасной среды и предотвратить появление в этой среде источников зажигания.
При проектировании промышленных предприятий следует учитывать требования пожарной безопасности. Необходимо, чтобы используемые строительные конструкции обладали требуемой огнестойкостью, т. е. способностью сохранять под действием высоких температур пожара свои рабочие функции, связанные с огнепреграждающей, теплоизолирующей или несущей способностью.
Огнепреграждающая способность строительных конструкций характеризует их стойкость к образованию трещин или сквозных отверстий, через которые проникают продукты горения или пламя.
Теплоизолирующая способность конструкции зависит от их способности к прогреву. Многие строительные материалы плохо проводят тепло (обладают низкой теплопроводностью). Это объясняется тем, что они имеют пористую структуру, причем в их ячейках заключен воздух, теплопроводность которого мала. Огнестойкость по теплоизолирующей способности характеризуется повышением температуры в любой точке на необогреваемой поверхности конструкции более чем на 190°С по сравнению с ее первоначальной температурой (до нагрева).
Потеря несущей способности строительной конструкции характеризуется ее обрушением или прогибом.
Количественно огнестойкость строительных конструкций характеризуют пределом огнестойкости, т. е. временем (в часах или минутах), по истечении которого строительная конструкция теряет несущую или ограждающую способность1.
1 Потеря ограждающей способности – это образование в несущих конструкциях трещин, через которые в соседние помещения могут проникать продукты горения и пламя, или прогрев строительных конструкций до таких температур, при которых возможно самовоспламенение веществ в смежных помещениях.

Для повышения огнестойкости зданий и сооружений их металлические конструкции оштукатуривают или облицовывают материалами с низкой теплопроводностью, например, гипсовыми плитами. Хороший эффект дает окрашивание металлических и деревянных конструкций специальными огнезащитными красками (например, типа ВПМ). Для защиты деревянных конструкций от огня их также оштукатуривают или пропитывают антипиренами2 (например, фосфорнокислым или сернокислым аммонием и др.).
2 Антипирены – это химические вещества, придающие древесине негорючесть.

Существенное значение имеет зонирование территорий, которое заключается в группировании на территории предприятий, цехов и участков с повышенной пожарной опасностью в определенных местах (с подветренной стороны). Кроме того, необходимо учитывать рельеф местности. Например, склады и резервуары с горючим надо располагать в низких местах, чтобы при возникновении пожара разлившаяся горючая жидкость не могла стекать к низлежащим зданиям и сооружениям.
Для того чтобы огонь при пожаре не распространялся с одного здания на другое, их располагают на определенном расстоянии друг от друга. Это расстояние называют противопожарным разрывом. Для различных категорий зданий противопожарные разрывы составляют 9–18 м.
Для защиты от пожара в зданиях устраивают противопожарные преграды, т. е. конструкции с нормируемым пределом огнестойкости, препятствующие распространению огня из одной части здания в другую. К этим преградам, имеющим предел огнестойкости не менее 2,5 ч, относятся стены, перегородки, перекрытия, двери, ворота, окна и др.
При проектировании и строительстве необходимо предусмотреть пути эвакуации работающих, т. е. пути, ведущие к эвакуационному выходу на случай возникновения пожара. Здания и сооружения должны быть снабжены устройствами, предназначенными для удаления дыма при пожаре: аэрационными фонарями, специальными дымовыми люками и др.

22.2. Основные способы тушения пожаров

Рассмотрим основные способы тушения пожаров и применяемые при этом огнегасительные вещества.
Для тушения пожара используют следующие средства: разбавление воздуха негорючими газами до таких концентраций кислорода, при которых горение прекращается; охлаждение очага горения ниже определенной температуры (температуры горения); механический срыв пламени струей жидкости или газа; снижение скорости химической реакции, протекающей в пламени; создание условий огнепреграждения, при которых пламя распространяется через узкие каналы.
Огнегасительньши называют вещества, которые при введении в зону сгорания прекращают горение. Основные огнегасящие вещества и материалы – это вода и водяной пар, химическая и воздушно-механическая пены, водные растворы солей, негорючие газы, галоидоуглеводородные огнегасительные составы и сухие огнетушащие порошки.
Наиболее распространенным веществом, применяемым для тушения пожара, является вода. Она снижает температуру очага горения. При нагреве до 100°С 1 литра воды поглощается приблизительно 4•105Дж теплоты, а при испарении – 22•105Дж. Водяной пар (из 1 литра воды образуется около 1700 л пара) препятствует доступу кислорода к горящему веществу. Вода, подаваемая к очагу горения под большим давлением, механически сбивает пламя, что облегчает тушение пожара. Воду не применяют для тушения щелочных металлов (натрия, калия), карбида кальция, а также легковоспламеняющихся и горючих жидкостей, плотность которых меньше плотности воды (бензин, керосин, ацетон, спирты, масла и др.), так как они всплывают на поверхность воды и продолжают гореть на поверхности. Вода хорошо проводит электрический ток, поэтому ее не используют для тушения электроустановок, находящихся под напряжением (это приводит к короткому замыканию).
Водяной пар можно применять для тушения ряда твердых, жидких и газообразных веществ. Наибольший эффект от применения водяного пара достигается в помещениях, объем которых не превышает 500 м3, а также при пожарах, возникших на небольших открытых площадках.
Химические и воздушно-механические пены1 применяют для тушения твердых и жидких веществ, не взаимодействующих с водой. Одной из основных характеристик этих пен является их кратность, т. е. отношение объема пены к объему ее жидкой фазы.
1 Пеной называют неоднородную систему, состоящую из жидкости и распределенных в ней пузырьков воздуха или газа.

Воздушно-механическую пену получают в специальных пенообразующих аппаратах с использованием пенообразователей (ПО-1С, ПО-6К, ПО-ЗА, «САМПО» и др.). Различают воздушно-механическую пену низкой (до 20), средней (20–200) и высокой (свыше 200) кратности. Воздушная пена, полученная пенообразователем ПО-1C и некоторыми другими, пригодна для тушения некоторых ЛВЖ и ГЖ (спиртов, ацетона, эфиров и др.).
Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразователя. Она состоит из водного раствора минеральных солей, пенообразователя и пузырьков углекислого газа. Ее стоимость выше, чем воздушно-механической пены, поэтому использование химической пены при пожаротушении имеет тенденцию к сокращению. При тушении пожаров пеной покрывают горящие вещества, препятствуя тем самым поступлению горючих газов и паров к очагу горения.
Применение инертных и негорючих газов (аргон, азот, галоидированные углеводороды и др.) основано на разбавлении воздуха и снижении в нем концентрации кислорода до значений, при которых горение прекращается. Так, углекислый газ (диоксид углерода) используется для тушения горящих складов ЛВЖ, аккумуляторных станций, электрооборудования, печей и др. Его нельзя применять для тушения щелочных и щелочноземельных металлов, тлеющих материалов и некоторых других. Для тушения этих материалов лучше применять аргон, а в некоторых случаях и азот.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях