www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ


Если какой-либо агрегат колеблется с определенной частотой, то снизить его вибрацию можно установкой на агрегат динамического виброгасителя – самостоятельной колебательной системы, обладающей массой т и жесткостью q. При этом для вибрации защищаемого агрегата его частота колебаний f и частота колебаний виброгасителя f0 должны находиться в следующем соотношении:


(17.20)
Закрепленный жестко на защищаемом агрегате виброгаситель колеблется в противофазе с основной установкой, в результате чего снижается уровень вибрации. Однако он действует на определенной (фиксированной) частоте колебаний, соответствующей резонансному режиму работы. При изменении частоты колебаний основной установки резонанс между ней и виброгасителем пропадает, в результате резко снижается эффективность его работы.
Достаточно эффективным способом защиты является виброизоляция, которая заключается в уменьшении передачи колебания от вибрирующего устройства к защищаемому объекту помещением между ними упругих устройств. Эти устройства называются виброизоляторами. Эффективность виброизоляторов характеризуется коэффициентом передачи (КП), который рассчитывается по следующей формуле:
КП = ,

(17.21)
где– амплитуда силы, передаваемой на несущую конструкцию;
– амплитуда переменной силы, создаваемой вибрирующим агрегатом.
В качестве виброизоляторов используют пружинные опоры либо упругие прокладки из резины, пробки и т.д. Возможно использование сочетания этих устройств (комбинированные виброизоляторы).
Для уменьшения вибрации ручного инструмента его ручки выполняются с использованием упругих элементов – виброизоляторов, снижающих уровень вибрации.
Рассмотренные выше методы защиты от шума, инфра- и ультразвука, а также от вибрации относятся к коллективным методам защиты.
К средствам индивидуальной защиты от шума относятся противошумные вкладыши, наушники и шлемы. Противошумные вкладыши вставляют в слуховой канал и перекрывают его. В зависимости от частоты они обеспечивают снижение уровня шума на 5–20 дБ. Их изготавливают из специального ультратонкого волокна, а также из резины или эбонита. Это наиболее дешевые и компактные индивидуальные средства защиты слуха человека, однако они могут вызвать раздражение слухового прохода.
Акустические характеристики противошумных наушников более эффективны, чем вкладышей. В зависимости от частоты они обеспечивают снижение шума на 7–47 дБ. Наиболее эффективно наушники обеспечивают защиты на высоких частотах.
При очень высоких уровнях шума (более 120дБ) применяют шлемы.
В качестве индивидуальных средств защиты от контактного действия ультразвука можно рекомендовать применение специальных инструментов с изолированными ручками (покрытыми пористой резиной или поролоном), а также использовать резиновые перчатки.
К средствам индивидуальной зашиты от вибраций относятся специальные рукавицы, перчатки и прокладки. Для защиты ног используют виброзащитную обувь, снабженную прокладками из упругодемпфирующих материалов (пластмассы, резины или войлока). С целью профилактики вибрационной болезни персонала, работающего с вибрирующим оборудованием, необходимо строго соблюдать режимы труда и отдыха, чередуя при этом рабочие операции, связанные с воздействием вибрации, и без нее.
Для измерения уровня шума, инфра- и ультразвука, а также вибрации используют различные приборы, позволяющие определять основные характеристики виброакустических факторов. Принципиальная схема шумомера представлена на рис. 17.4.

В шумомерах используют конденсаторные или пьезоэлектрические микрофоны, преобразующие звуковые колебания в электрические, которые затем усиливаются, проходят через корректирующие фильтры и выпрямитель и поступают на прибор – регистратор.
Среди отечественных приборов для измерения шума можно указать ВШВ-003, позволяющий проводить измерения в частотном диапазоне 10–20 000 Гц (уровень измеряемого звука 25– 140 дБ), и ШВК-1 с фильтрами ФЭ-2 (уровень измеряемого звука 30–140дБ в частотном диапазоне 2–40 000 Гц.). Как следует из их частотных характеристик, эти приборы захватывают и инфразвуковой диапазон.

Контрольные вопросы

1.

Дайте определение понятий «шум», «ультразвук», «инфразвук», «вибрация».
2.

Какими физическими параметрами характеризуется шум?
3.

Какими физическими параметрами характеризуются ультразвуковые и инфразвуковые колебания?
4.

Каково действие шума, ультра- и инфразвука, а также вибрации на организм человека?
5.

В чем заключается нормирование шума, ультра- и инфразвука, а также вибрации?
6.

Перечислите основные методы защиты от воздействия шума, ультра- и инфразвука, вибрации.
7.

Что такое звукоизоляция, звукопоглощение?
8.

Что такое виброизоляция?
9.

Что такое глушители шума? Для защиты от каких шумов их используют?
10.

Перечислите индивидуальные средства защиты от шума, ультразвука и вибрации.
11.

Какими приборами измеряют шум, ультра- и инфразвук, а также вибрацию?

Глава 18. Защита от электромагнитных полей и лазерного излучения

Электромагнитные волны возникают при ускоренном движении электрических зарядов. Электромагнитные волны – это взаимосвязанное распространение в пространстве изменяющихся электрического и магнитного полей. Совокупность этих полей, неразрывно связанных друг с другом, называется электромагнитным полем. Несмотря на то, что длина электромагнитных волн и их свойства различны, все они, начиная от радиоволн и заканчивая гамма-излучением, – одной физической природы. Исследованный в настоящее время диапазон электромагнитных волн состоит из волн с длинами, соответствующими частотам от 103 до 1024Гц. По мере убывания длины волны в диапазон включаются радиоволны, инфракрасное излучение, видимый свет (световые лучи), ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение.
Источниками электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а также искусственные источники: различные генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров и др. На предприятиях источниками электромагнитных полей промышленной частоты являются высоковольтные линии электропередач (ЛЭП), измерительные приборы, устройства защиты и автоматики, соединительные шины и др. В зависимости от длины волны электромагнитное излучение делят на ряд диапазонов (табл. 18.1).

*Представленные в таблице диапазоны частот включают верхние пределы и исключают нижние.
** Представленные в таблице диапазоны длин волн включают нижние пределы и исключают верхние.

Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна: С = 2,997925 • 108 м/с.
Электромагнитная волна, распространяясь в неограниченном пространстве со скоростью света, создает переменное электромагнитное поле, которое способно воздействовать на заряженные частицы и токи, в результате чего происходит превращение энергии поля в другие виды энергии. Как уже сказано выше, переменное электромагнитное поле представляет собой совокупность магнитного и электрического полей, количественной характеристикой которых являются напряженность электрического поля Е (размерность – вольт на метр, или, сокращенно, В/м) и напряженность магнитного поля Н (размерность – ампер на метр, или, сокращенно, А/м). Величины Е и Н – векторные, их колебания происходят во взаимоперпендикулярных плоскостях.
При распространении в воздухе или в вакууме Е =377 Н.
Плотность потока энергии (I) может быть записана (в векторной форме) как . Эти величины показывают, какое количество энергии протекает за 1 с через площадку, расположенную перпендикулярно движению волны.
Если сформировавшаяся электромагнитная волна имеет сферическую форму, то справедливо следующее равенство:
,

(18.1)
где

Pист – мощность источника излучения, Вт;
r – расстояние от источника излучения, м.
Отсюда можно определить напряженность электрического поля по формуле:
E = .

(18.2)
Начиная от источника излучения всю область распространения электромагнитных волн принято условно разделять на три зоны: ближнюю, промежуточную и дальнюю. Радиус ближней зоны приблизительно составляет 1/6 волны от источника излучения, а дальняя зона начинается на расстоянии, равном примерно 6 длинам волн; промежуточная зона находится между ними.
Переменные электромагнитные поля способны оказывать негативное воздействие на организм человека, последствия которого зависят от напряженности электрического и магнитного полей, частоты излучения, плотности потока энергии, размера облучаемой поверхности тела человека и индивидуальных способностей его организма.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях